Future visions on maritime
energy solutions

and some recent research results

Maria Grahn

Maritime Environmental Sciences,
Chalmers University of Technology

2022-09-01



Main strategies to reduce CO, emissions from the transportation sector
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Pad ~

Energy demand

CO, emission per energy unit

Pad

~

Energy use per km

Total km driven

/7

. More energy-efficient vehicles\ 4.
(incl. hybridization,
lectrification)

. Changei energy-
efficient transport modes (e.g.
train vs plane, bikes or public
transport vs cars)

. Fuel-efficient driving (Eco-
driving, platooning)

5.

6.

8.
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7. Travel free days

\

Increase number of
passengers and goods per
vehicle or ship

City planning for reduced
transport demand

Locally produced goods

10. Introduce fuels

with lower CO,
emissions than
current fuels

Longer trucks, larger ships
(if filled)

De-couple the connection
between transport need and
economic growth

2022-09-12



Different fuels and vehicle technology options
are differently well suited for different transport modes
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Cost-comparisons

Total cost of ownership
focusing on biofuels, electrolytic hydrogen and
electrofuels in the shipping sector

Korberg AD, Brynolf S, Grahn M, Skov IR (2021). Techno-economic assessment of advanced fuels and
propulsion systems in future fossil-free ships. Renewable and Sustainable Energy Reviews 142: 110861




Overview of investigated options

Fossil options are not assessed but included as a comparison
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(four-stroke internal combustion engine)
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Diesel/HVO (two-stroke internal combustion engine)
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(LMG) (fully battery-electric)
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(proton exchange membrane fuel cell)
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Electricity
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Korberg AD, Brynolf S, Grahn M, Skov IR (2021). Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships.
Renewable and Sustainable Energy Reviews 142: 110861

2022-09-12



Considered fuels for the shipping sector
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Korberg AD, Brynolf S, Grahn M, Skov IR (2021). Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships.
Renewable and Sustainable Energy Reviews 142: 110861
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ME/yr

Costs include: fuel production, fuel infrastructure,
annuitized investments in propulsion technologies, energy
storage and reduced income due to less cargo space.

Total cost of ownership (TCO) Otflsation'ip Short Lone
For the ship category "Large ferries” Propulsion ICE || ¥C || BE || ICE || FC || BE
MGO | 09 | 24
Color coding: within each fuel category (biofuels Low TCO
. = : Biomethanol 42
electrofuels) and utilisation rate to highlight the cheapest omeTane Zit = L Mé€/year
option (4 blocks). BioDME 2.3 6.2 |
Results ﬁ: Biodiesel 2.7 7.6
« Methanol shows lowest cost within both biofuels and b% BioLMG 3.0 m 78 E
electrofuels (but DME, HVO, and ammonia very close).
» Combustion engines (ICE) always lower TCO than fuel BioLBG 2.8 4.8 14 8.4
cells (FC), but similar for long distance. HVO - -
« BE lower TCO than all electrofuel options and almost all . '
FC options (only for this ship category, not for larger shi
P . (only P gory g P E-methanol 33 5.3 9.7 10.3
categories). —
K% E-DME 3.7 10.3
2
Acronyms used: = E-diesel 4.3 12.5
MGO= Marine gas oil (low sulpur bunker oil) 3
DME= Dimethyleter (from gasification of wood) m _
LMG-= Liquefied methane gas (from gasification of wood) E-LMG il E — —
LBG= Liquefied biogas (from digestion of household waste) .
HVO= Hydrotreated vegetable oil Ammonia 3.7 5.5 10.2 10.6 Q
LH2= liquefied hydrogen .
ICE= Internal combustion engine propulsion LH, 4.7 5L m 11.9 Ii'_gh :ICO
FC= fuel cell propulsion M¢€/year
BE= battery electric propulsion Electricity 28 8.3

Source: Korberg AD, Brynolf S, Grahn M, Skov IR (2021). Techno-economic assessment of advanced fuels and
propulsion systems in future fossil-free ships. Renewable and Sustainable Energy Reviews 142 (2021) 110861
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Life Cycle Assessment and Costing of Fuels and
Propulsion Systems in Future Fossil-Free Shipping

Kanchiralla, FM, Brynolf S, Malmgren E, Hansson J, Grahn M (2022) Life Cycle Assessment and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping.
Environmental Science and Technology https://doi.org/10.1021/acs.est.2c03016



Scope covered in the article

Compared electrofuels from life cycle perspective in terms of:

1. Energy utilization rate

Climate change (GWP20 and GWP100). Other environmental impacts

Other Environmental impacts — K Acidification (mol H+ eq)

Life cycle cost Ecotoxi(?ity, .freshwa.ter (CTUe)
Eutrophication, marine (kg Neq)
Eutrophication, terrestrial (mol Neq)

a & N

Carbon abatement cost

Ozone depletion (kg CFC-11)

Human toxicity, cancer effects (CTUh)

Human toxicity, non-cancer effects (CTUh)
Particulate matter (disease inc.)
Photochemical ozone formation (kgNMVOCeq)

Functional unit:
Case study: Round trip
Stena Germanica Gothenburg — Kiel
- Gothenburg

Cost flow:
Euros with base
year 2021

Time horizon:

2030

Kanchiralla, FM, Brynolf S, Malmgren E, Hansson J, Grahn M (2022) Life Cycle Assessment and Costing of Fuels and Propulsion Systems in
Future Fossil-Free Shipping. Environmental Science and Technology https://doi.org/10.1021/acs.est.2c03016
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Kanchiralla, FM, Brynolf S, Malmgren E, Hansson J, Grahn M (2022) Life Cycle Assessment and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping.

Environmental Science and Technology https://doi.org/10.1021/acs.est.2c03016 2022-09-12



Decarbonization solutions

(Case 4to 7)

Kanchiralla, FM, Brynolf S, Malmgren E, Hansson J, Grahn M (2022) Life Cycle Assessment
and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping. Environmental

Science and Technology https://doi.org/10.1021/acs.est.2c03016
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Global warming potential
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Kanchiralla, FM, Brynolf S, Malmgren E, Hansson J, Grahn M (2022) Life Cycle Assessment and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping.

Environmental Science and Technology https://doi.org/10.1021/acs.est.2c03016
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GWP20 always slightly
higher than GWP100.
E-methanol assuming
DAC balancing CO2 from
the combustion.

MGO the highest GWP.
Otherwise, relatively
similar GWP for all
cases.

2022-09-12



A E-methanol ICE among
the highest (worst) in
many criteria
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Other
environmental
Impacts

Hydrogen and battery electric
(BE) typically perform the best

Kanchiralla, FM, Brynolf S, Malmgren E, Hansson J,
Grahn M (2022) Life Cycle Assessment and Costing
of Fuels and Propulsion Systems in Future Fossil-
Free Shipping. Environmental Science and
Technology https://doi.org/10.1021/acs.est.2c03016
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Economic Impact assessment

Carbon abatement cost(€/tC0,eq) =
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Kanchiralla, FM, Brynolf S, Malmgren E, Hansson J, Grahn M (2022) Life Cycle Assessment and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping.
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Life cycle GWP relative to reference (tCO5eq/functional unit)
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E-methanol and
E-ammonia
lowest cost of the
studied cases.
There is a need
for a carbon fee
of 300-400
€/tCO2 for e-fuels
to compete with
fossil MGO.
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Cost-comparison

fuels, vehicles and fuel infrastructure
focusing on electrolytic hydrogen and electrofuels

Brynolf S, Hansson J, Anderson JE, Skov IR, Wallington TJ, Grahn M, Korberg AD, Malmgren E, Taljegard M (2022). Review of electrofuel feasibility -
Prospects for road, ocean, and air transport. Progress in Energy, 4 (4), 042007.



Mobility costs (approx 2030) for different electrofuels, electrolytic hydrogen and

battery electric propulsion (BE) and marine gas oil (MGO)
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(b) Container ship

Brynolf S, Hansson J, Anderson JE, Skov IR, Wallington TJ, Grahn M, Korberg AD, Malmgren E, Taljegard M (2022).
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(a) large ferry with 1260 h of annual operation and 6 h
between bunkering and (b) container ship with 5280 h of
annual operation and 480 h between bunkering.

Production costs for e-fuel and bio-e-fuel were taken from
Grahn et al [6] all other data were taken from Korberg et al
[27] considering a 3% discount and technical lifetimes for the
components.

The shaded area represents the cost of the conventional
fossil alternative (MGO ICE, HFO ICE), also including a fuel
distribution cost.

- LH2 FC in parity with LH2 ICE, (FC higher
investment cost but less fuel needed)

- Difficult to compete with conventional fossil fuels.

2022-09-12

Review of electrofuel feasibility - Prospects for road, ocean, and air transport. Progress in Energy, 4 (4), 042007.



General reflections on future maritime energy solutions

Three types of energy carriers have the potential to substantially reduce the fossil CO,
emissions from the transportation sector:

fuels including carbon atoms as biofuels/electrofuels,

fuels without carbon hydrogen/ammonia, and

electricity.

It is most likely that parallel solutions will be developed, e.g.

There are many advantages for electric solutions in cities (Battery electric and hydrogen in fuel cells).
Aspects like a reduction of NOx, soot, and noise. | forsee it is likely different electric/nydrogen solutions
dominating close to cities (also applies to electric buses, cars, delivery trucks, trams, metro etc).

There are several challenges for electrifying long-distance transport (especially ships and aircratft).
Electrofuels (including e-ammonia) may complement the world’s limited amount of biofuels for these
transport modes. (My research points at that LNG produced from fossil natural gas is a short term
solution). Hydrogen in combustion engines is a joker difficult to forsee.
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CHALMERS



